3.203 \(\int \frac{\cos ^2(e+f x)}{(a+b \sec ^2(e+f x))^2} \, dx\)

Optimal. Leaf size=142 \[ \frac{b^{3/2} (5 a+4 b) \tan ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b}}\right )}{2 a^3 f (a+b)^{3/2}}+\frac{b (a+2 b) \tan (e+f x)}{2 a^2 f (a+b) \left (a+b \tan ^2(e+f x)+b\right )}+\frac{x (a-4 b)}{2 a^3}+\frac{\sin (e+f x) \cos (e+f x)}{2 a f \left (a+b \tan ^2(e+f x)+b\right )} \]

[Out]

((a - 4*b)*x)/(2*a^3) + (b^(3/2)*(5*a + 4*b)*ArcTan[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b]])/(2*a^3*(a + b)^(3/2)*
f) + (Cos[e + f*x]*Sin[e + f*x])/(2*a*f*(a + b + b*Tan[e + f*x]^2)) + (b*(a + 2*b)*Tan[e + f*x])/(2*a^2*(a + b
)*f*(a + b + b*Tan[e + f*x]^2))

________________________________________________________________________________________

Rubi [A]  time = 0.193785, antiderivative size = 142, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.261, Rules used = {4146, 414, 527, 522, 203, 205} \[ \frac{b^{3/2} (5 a+4 b) \tan ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b}}\right )}{2 a^3 f (a+b)^{3/2}}+\frac{b (a+2 b) \tan (e+f x)}{2 a^2 f (a+b) \left (a+b \tan ^2(e+f x)+b\right )}+\frac{x (a-4 b)}{2 a^3}+\frac{\sin (e+f x) \cos (e+f x)}{2 a f \left (a+b \tan ^2(e+f x)+b\right )} \]

Antiderivative was successfully verified.

[In]

Int[Cos[e + f*x]^2/(a + b*Sec[e + f*x]^2)^2,x]

[Out]

((a - 4*b)*x)/(2*a^3) + (b^(3/2)*(5*a + 4*b)*ArcTan[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b]])/(2*a^3*(a + b)^(3/2)*
f) + (Cos[e + f*x]*Sin[e + f*x])/(2*a*f*(a + b + b*Tan[e + f*x]^2)) + (b*(a + 2*b)*Tan[e + f*x])/(2*a^2*(a + b
)*f*(a + b + b*Tan[e + f*x]^2))

Rule 4146

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = Fre
eFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[(1 + ff^2*x^2)^(m/2 - 1)*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/
2), x]^p, x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && IntegerQ[n/2]

Rule 414

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> -Simp[(b*x*(a + b*x^n)^(p + 1)*(
c + d*x^n)^(q + 1))/(a*n*(p + 1)*(b*c - a*d)), x] + Dist[1/(a*n*(p + 1)*(b*c - a*d)), Int[(a + b*x^n)^(p + 1)*
(c + d*x^n)^q*Simp[b*c + n*(p + 1)*(b*c - a*d) + d*b*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d,
 n, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] &&  !( !IntegerQ[p] && IntegerQ[q] && LtQ[q, -1]) && IntBinomial
Q[a, b, c, d, n, p, q, x]

Rule 527

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> -Simp[
((b*e - a*f)*x*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(a*n*(b*c - a*d)*(p + 1)), x] + Dist[1/(a*n*(b*c - a*d
)*(p + 1)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(b*e - a*f) + e*n*(b*c - a*d)*(p + 1) + d*(b*e - a*f)
*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, q}, x] && LtQ[p, -1]

Rule 522

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Dist[(b*e - a*f
)/(b*c - a*d), Int[1/(a + b*x^n), x], x] - Dist[(d*e - c*f)/(b*c - a*d), Int[1/(c + d*x^n), x], x] /; FreeQ[{a
, b, c, d, e, f, n}, x]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\cos ^2(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^2} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1}{\left (1+x^2\right )^2 \left (a+b+b x^2\right )^2} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac{\cos (e+f x) \sin (e+f x)}{2 a f \left (a+b+b \tan ^2(e+f x)\right )}-\frac{\operatorname{Subst}\left (\int \frac{-a+b-3 b x^2}{\left (1+x^2\right ) \left (a+b+b x^2\right )^2} \, dx,x,\tan (e+f x)\right )}{2 a f}\\ &=\frac{\cos (e+f x) \sin (e+f x)}{2 a f \left (a+b+b \tan ^2(e+f x)\right )}+\frac{b (a+2 b) \tan (e+f x)}{2 a^2 (a+b) f \left (a+b+b \tan ^2(e+f x)\right )}-\frac{\operatorname{Subst}\left (\int \frac{-2 \left (a^2-2 a b-2 b^2\right )-2 b (a+2 b) x^2}{\left (1+x^2\right ) \left (a+b+b x^2\right )} \, dx,x,\tan (e+f x)\right )}{4 a^2 (a+b) f}\\ &=\frac{\cos (e+f x) \sin (e+f x)}{2 a f \left (a+b+b \tan ^2(e+f x)\right )}+\frac{b (a+2 b) \tan (e+f x)}{2 a^2 (a+b) f \left (a+b+b \tan ^2(e+f x)\right )}+\frac{(a-4 b) \operatorname{Subst}\left (\int \frac{1}{1+x^2} \, dx,x,\tan (e+f x)\right )}{2 a^3 f}+\frac{\left (b^2 (5 a+4 b)\right ) \operatorname{Subst}\left (\int \frac{1}{a+b+b x^2} \, dx,x,\tan (e+f x)\right )}{2 a^3 (a+b) f}\\ &=\frac{(a-4 b) x}{2 a^3}+\frac{b^{3/2} (5 a+4 b) \tan ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b}}\right )}{2 a^3 (a+b)^{3/2} f}+\frac{\cos (e+f x) \sin (e+f x)}{2 a f \left (a+b+b \tan ^2(e+f x)\right )}+\frac{b (a+2 b) \tan (e+f x)}{2 a^2 (a+b) f \left (a+b+b \tan ^2(e+f x)\right )}\\ \end{align*}

Mathematica [A]  time = 1.25881, size = 103, normalized size = 0.73 \[ \frac{\frac{2 b^{3/2} (5 a+4 b) \tan ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b}}\right )}{(a+b)^{3/2}}+\sin (2 (e+f x)) \left (\frac{2 a b^2}{(a+b) (a \cos (2 (e+f x))+a+2 b)}+a\right )+2 (a-4 b) (e+f x)}{4 a^3 f} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[e + f*x]^2/(a + b*Sec[e + f*x]^2)^2,x]

[Out]

(2*(a - 4*b)*(e + f*x) + (2*b^(3/2)*(5*a + 4*b)*ArcTan[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b]])/(a + b)^(3/2) + (a
 + (2*a*b^2)/((a + b)*(a + 2*b + a*Cos[2*(e + f*x)])))*Sin[2*(e + f*x)])/(4*a^3*f)

________________________________________________________________________________________

Maple [A]  time = 0.109, size = 174, normalized size = 1.2 \begin{align*}{\frac{\tan \left ( fx+e \right ) }{2\,f{a}^{2} \left ( \left ( \tan \left ( fx+e \right ) \right ) ^{2}+1 \right ) }}+{\frac{\arctan \left ( \tan \left ( fx+e \right ) \right ) }{2\,f{a}^{2}}}-2\,{\frac{\arctan \left ( \tan \left ( fx+e \right ) \right ) b}{f{a}^{3}}}+{\frac{{b}^{2}\tan \left ( fx+e \right ) }{2\,f{a}^{2} \left ( a+b \right ) \left ( a+b+b \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) }}+{\frac{5\,{b}^{2}}{2\,f{a}^{2} \left ( a+b \right ) }\arctan \left ({\tan \left ( fx+e \right ) b{\frac{1}{\sqrt{ \left ( a+b \right ) b}}}} \right ){\frac{1}{\sqrt{ \left ( a+b \right ) b}}}}+2\,{\frac{{b}^{3}}{f{a}^{3} \left ( a+b \right ) \sqrt{ \left ( a+b \right ) b}}\arctan \left ({\frac{\tan \left ( fx+e \right ) b}{\sqrt{ \left ( a+b \right ) b}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(f*x+e)^2/(a+b*sec(f*x+e)^2)^2,x)

[Out]

1/2/f/a^2*tan(f*x+e)/(tan(f*x+e)^2+1)+1/2/f/a^2*arctan(tan(f*x+e))-2/f/a^3*arctan(tan(f*x+e))*b+1/2/f*b^2/a^2/
(a+b)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)+5/2/f*b^2/a^2/(a+b)/((a+b)*b)^(1/2)*arctan(tan(f*x+e)*b/((a+b)*b)^(1/2))
+2/f*b^3/a^3/(a+b)/((a+b)*b)^(1/2)*arctan(tan(f*x+e)*b/((a+b)*b)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2/(a+b*sec(f*x+e)^2)^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 0.660316, size = 1246, normalized size = 8.77 \begin{align*} \left [\frac{4 \,{\left (a^{3} - 3 \, a^{2} b - 4 \, a b^{2}\right )} f x \cos \left (f x + e\right )^{2} + 4 \,{\left (a^{2} b - 3 \, a b^{2} - 4 \, b^{3}\right )} f x +{\left (5 \, a b^{2} + 4 \, b^{3} +{\left (5 \, a^{2} b + 4 \, a b^{2}\right )} \cos \left (f x + e\right )^{2}\right )} \sqrt{-\frac{b}{a + b}} \log \left (\frac{{\left (a^{2} + 8 \, a b + 8 \, b^{2}\right )} \cos \left (f x + e\right )^{4} - 2 \,{\left (3 \, a b + 4 \, b^{2}\right )} \cos \left (f x + e\right )^{2} - 4 \,{\left ({\left (a^{2} + 3 \, a b + 2 \, b^{2}\right )} \cos \left (f x + e\right )^{3} -{\left (a b + b^{2}\right )} \cos \left (f x + e\right )\right )} \sqrt{-\frac{b}{a + b}} \sin \left (f x + e\right ) + b^{2}}{a^{2} \cos \left (f x + e\right )^{4} + 2 \, a b \cos \left (f x + e\right )^{2} + b^{2}}\right ) + 4 \,{\left ({\left (a^{3} + a^{2} b\right )} \cos \left (f x + e\right )^{3} +{\left (a^{2} b + 2 \, a b^{2}\right )} \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )}{8 \,{\left ({\left (a^{5} + a^{4} b\right )} f \cos \left (f x + e\right )^{2} +{\left (a^{4} b + a^{3} b^{2}\right )} f\right )}}, \frac{2 \,{\left (a^{3} - 3 \, a^{2} b - 4 \, a b^{2}\right )} f x \cos \left (f x + e\right )^{2} + 2 \,{\left (a^{2} b - 3 \, a b^{2} - 4 \, b^{3}\right )} f x -{\left (5 \, a b^{2} + 4 \, b^{3} +{\left (5 \, a^{2} b + 4 \, a b^{2}\right )} \cos \left (f x + e\right )^{2}\right )} \sqrt{\frac{b}{a + b}} \arctan \left (\frac{{\left ({\left (a + 2 \, b\right )} \cos \left (f x + e\right )^{2} - b\right )} \sqrt{\frac{b}{a + b}}}{2 \, b \cos \left (f x + e\right ) \sin \left (f x + e\right )}\right ) + 2 \,{\left ({\left (a^{3} + a^{2} b\right )} \cos \left (f x + e\right )^{3} +{\left (a^{2} b + 2 \, a b^{2}\right )} \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )}{4 \,{\left ({\left (a^{5} + a^{4} b\right )} f \cos \left (f x + e\right )^{2} +{\left (a^{4} b + a^{3} b^{2}\right )} f\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2/(a+b*sec(f*x+e)^2)^2,x, algorithm="fricas")

[Out]

[1/8*(4*(a^3 - 3*a^2*b - 4*a*b^2)*f*x*cos(f*x + e)^2 + 4*(a^2*b - 3*a*b^2 - 4*b^3)*f*x + (5*a*b^2 + 4*b^3 + (5
*a^2*b + 4*a*b^2)*cos(f*x + e)^2)*sqrt(-b/(a + b))*log(((a^2 + 8*a*b + 8*b^2)*cos(f*x + e)^4 - 2*(3*a*b + 4*b^
2)*cos(f*x + e)^2 - 4*((a^2 + 3*a*b + 2*b^2)*cos(f*x + e)^3 - (a*b + b^2)*cos(f*x + e))*sqrt(-b/(a + b))*sin(f
*x + e) + b^2)/(a^2*cos(f*x + e)^4 + 2*a*b*cos(f*x + e)^2 + b^2)) + 4*((a^3 + a^2*b)*cos(f*x + e)^3 + (a^2*b +
 2*a*b^2)*cos(f*x + e))*sin(f*x + e))/((a^5 + a^4*b)*f*cos(f*x + e)^2 + (a^4*b + a^3*b^2)*f), 1/4*(2*(a^3 - 3*
a^2*b - 4*a*b^2)*f*x*cos(f*x + e)^2 + 2*(a^2*b - 3*a*b^2 - 4*b^3)*f*x - (5*a*b^2 + 4*b^3 + (5*a^2*b + 4*a*b^2)
*cos(f*x + e)^2)*sqrt(b/(a + b))*arctan(1/2*((a + 2*b)*cos(f*x + e)^2 - b)*sqrt(b/(a + b))/(b*cos(f*x + e)*sin
(f*x + e))) + 2*((a^3 + a^2*b)*cos(f*x + e)^3 + (a^2*b + 2*a*b^2)*cos(f*x + e))*sin(f*x + e))/((a^5 + a^4*b)*f
*cos(f*x + e)^2 + (a^4*b + a^3*b^2)*f)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)**2/(a+b*sec(f*x+e)**2)**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.3207, size = 274, normalized size = 1.93 \begin{align*} \frac{\frac{{\left (5 \, a b^{2} + 4 \, b^{3}\right )}{\left (\pi \left \lfloor \frac{f x + e}{\pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (b\right ) + \arctan \left (\frac{b \tan \left (f x + e\right )}{\sqrt{a b + b^{2}}}\right )\right )}}{{\left (a^{4} + a^{3} b\right )} \sqrt{a b + b^{2}}} + \frac{a b \tan \left (f x + e\right )^{3} + 2 \, b^{2} \tan \left (f x + e\right )^{3} + a^{2} \tan \left (f x + e\right ) + 2 \, a b \tan \left (f x + e\right ) + 2 \, b^{2} \tan \left (f x + e\right )}{{\left (b \tan \left (f x + e\right )^{4} + a \tan \left (f x + e\right )^{2} + 2 \, b \tan \left (f x + e\right )^{2} + a + b\right )}{\left (a^{3} + a^{2} b\right )}} + \frac{{\left (f x + e\right )}{\left (a - 4 \, b\right )}}{a^{3}}}{2 \, f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2/(a+b*sec(f*x+e)^2)^2,x, algorithm="giac")

[Out]

1/2*((5*a*b^2 + 4*b^3)*(pi*floor((f*x + e)/pi + 1/2)*sgn(b) + arctan(b*tan(f*x + e)/sqrt(a*b + b^2)))/((a^4 +
a^3*b)*sqrt(a*b + b^2)) + (a*b*tan(f*x + e)^3 + 2*b^2*tan(f*x + e)^3 + a^2*tan(f*x + e) + 2*a*b*tan(f*x + e) +
 2*b^2*tan(f*x + e))/((b*tan(f*x + e)^4 + a*tan(f*x + e)^2 + 2*b*tan(f*x + e)^2 + a + b)*(a^3 + a^2*b)) + (f*x
 + e)*(a - 4*b)/a^3)/f